Speed sensorless direct torque control of IMs with rotor resistance estimation

نویسندگان

  • Murat Barut
  • Seta Bogosyan
  • Metin Gokasan
چکیده

Direct torque control (DTC) of induction motors (IMs) requires an accurate knowledge on the amplitude and angular position of the controlled flux in addition to the information related to angular velocity for velocity control applications. However, unknown load torque and uncertainties related to stator/rotor resistances due to operating conditions constitute major challenges for the performance of such systems. The determination of stator resistance can be performed by measurements, but methods must be developed for estimation and identification of rotor resistance and load torque. In this study, an EKF based solution is sought for determination of the rotor resistance and load torque as well as the above mentioned states required for DTC. The EKF algorithm used in conjunction with the speed sensorless DTC is tested under eleven scenarios comprised of various changes made in the velocity reference beside the load torque and rotor resistance values assigned in the model. With no a priori information in the estimated states and parameters, it has been demonstrated that the EKF estimation and sensorless DTC perform quite well in spite of the uncertainties and variations imposed on the system. 2004 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Torque Maximization and Sensorless Control of Induction Motor in a Flux Weakening region

In this paper, one presents a transient state performance optimization of vectorcontrolled induction motor (IM) drives operating in the field-weakening region. The vector control scheme, based on the rotor flux field-orientation (RFOC), is considered to ensure maximum torque motor operation regime. Although in the high speed region, the measure of rotor speed and the sensitivity to parameters e...

متن کامل

An Adaptive Nonlinear Controller for Speed Sensorless PMSM Taking the Iron Loss Resistance into Account (RESEARCH NOTE)

In this paper, an adaptive nonlinear controller is designed for rotor Surface Permanent Magnet Synchronous Motor (SPMSM) drive on the basis of Input-Output Feedback Control (IOFC), and Recursive Least Square (RLS) method. The RLS estimator detects the motor electromechanical parameters, including the motor iron loss resistance online. Moreover, a Sliding-Mode (SM) observer is developed for onli...

متن کامل

A Robust Sensorless Direct Torque Control of Induction Motor Based on MRAS and Extended Kalman Filter

In this paper, the classical Direct Torque Control (DTC) of Induction Motor (IM) using an open loop pure integration suffers from the well-known problems of integration especially in the low speed operation range is detailed. To tackle this problem, the IM variables and parameters estimation is performed using a recursive non-linear observer known as EKF. This observer is used to estimate the s...

متن کامل

IS-MRAS With On-Line Adaptation Parameters Based on Type-2 Fuzzy LOGIC for Sensorless Control of IM

This paper suggests novel sensorless speed estimation for an induction motor (IM) based on a stator current model reference adaptive system (IS-MRAS) scheme. The IS-MRAS scheme uses the error between the reference and estimated stator current vectors and the rotor speed. Observing rotor flux and the speed estimating using the conventional MRAS technique is confronted with certain problems relat...

متن کامل

A Current-Based Output Feedback Sliding Mode Control for Speed Sensorless Induction Machine Drive Using Adaptive Sliding Mode Flux Observer

This paper presents a new adaptive Sliding-Mode flux observer for speed sensorless and rotor flux control of three-phase induction motor (IM) drives. The motor drive is supplied by a three-level space vector modulation (SVM) inverter. Considering the three-phase IM Equations in a stator stationary two axis reference frame, using the partial feedback linearization control and Sliding-Mode (SM) c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004